blob: ef5317f829be2a21a2b787c269b2f5678e7ea797 [file] [log] [blame]
/* Copyright 2014 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __CROS_EC_ACCELGYRO_H
#define __CROS_EC_ACCELGYRO_H
#include "common.h"
#include "math_util.h"
#include "motion_sense.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Header file for accelerometer / gyro drivers. */
/*
* EC reports sensor data on 16 bits. For accel/gyro/mag.. the MSB is the sign.
* For instance, for gravity,
* real_value[in g] = measured_value * range >> 15
*/
#define MOTION_SCALING_FACTOR (1 << 15)
#define MOTION_ONE_G (9.80665f)
struct accelgyro_drv {
/**
* Initialize accelerometers.
* @s Pointer to sensor data pointer.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*init)(struct motion_sensor_t *s);
/**
* Read all three accelerations of an accelerometer. Note that all
* three accelerations come back in counts, where ACCEL_G can be used
* to convert counts to engineering units.
* @s Pointer to sensor data.
* @v Vector to store acceleration (in units of counts).
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*read)(const struct motion_sensor_t *s, intv3_t v);
/**
* Read the sensor's current internal temperature.
*
* @param s Pointer to sensor data.
* @param temp Pointer to store temperature in degrees Kelvin.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*read_temp)(const struct motion_sensor_t *s, int *temp);
/**
* Setter method for the sensor range. The sensor range
* defines the maximum value that can be returned from read(). As the
* range increases, the resolution gets worse.
* @s Pointer to sensor data.
* @range Range (Units are +/- G's for accel, +/- deg/s for gyro)
* @rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
*
* sensor->current_range is updated.
* It will be preserved unless EC reboots or AP is shutdown (S5).
*
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_range)(struct motion_sensor_t *s, int range, int rnd);
/**
* Setter and getter methods for the sensor resolution.
* @s Pointer to sensor data.
* @range Resolution (Units are number of bits)
* param rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_resolution)(const struct motion_sensor_t *s, int res,
int rnd);
int (*get_resolution)(const struct motion_sensor_t *s);
/**
* Setter and getter methods for the sensor output data range. As the
* ODR increases, the LPF roll-off frequency also increases.
* @s Pointer to sensor data.
* @rate Output data rate (units are milli-Hz)
* @rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_data_rate)(const struct motion_sensor_t *s, int rate,
int rnd);
int (*get_data_rate)(const struct motion_sensor_t *s);
/**
* Setter and getter methods for the sensor offset.
* @s Pointer to sensor data.
* @offset: offset to apply to raw data.
* @temp: temperature when calibration was done.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_offset)(const struct motion_sensor_t *s,
const int16_t *offset, int16_t temp);
int (*get_offset)(const struct motion_sensor_t *s, int16_t *offset,
int16_t *temp);
/**
* Setter and getter methods for the sensor scale.
* @s Pointer to sensor data.
* @scale: scale to apply to raw data.
* @temp: temperature when calibration was done.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_scale)(const struct motion_sensor_t *s, const uint16_t *scale,
int16_t temp);
int (*get_scale)(const struct motion_sensor_t *s, uint16_t *scale,
int16_t *temp);
/**
* Request performing/entering calibration.
* Either a one shot mode (enable is not used),
* or enter/exit a calibration state.
*/
int (*perform_calib)(struct motion_sensor_t *s, int enable);
/**
* Function that probes if supported chip is present.
* This pointer can be NULL if driver doesn't implement probing.
*
* @s Pointer to sensor data.
* @return EC_SUCCESS if the probe was successful, non-zero otherwise.
*/
int (*probe)(const struct motion_sensor_t *s);
/**
* @brief Enable/disable data interrupts
*
* If supported, enable or disable the data ready interrupts.
*
* @param s Pointer to sensor data
* @param enable Whether to enable or disable the interrupts
* @return EC_SUCCESS if the interrupt was configured
*/
int (*enable_interrupt)(const struct motion_sensor_t *s, bool enable);
/**
* Interrupt handler for GPIO pin.
*
* @signal Signal which caused interrupt.
*/
void (*interrupt)(enum gpio_signal signal);
/**
* handler for interrupts triggered by the sensor: it runs in task and
* process the events that triggered an interrupt.
* @s Pointer to sensor data.
* @event Event to process. May add other events for the next processor.
*
* Return EC_SUCCESS when one event is handled, EC_ERROR_NOT_HANDLED
* when no events have been processed.
*/
int (*irq_handler)(struct motion_sensor_t *s, uint32_t *event);
/**
* handler for setting/getting activity information.
* Manage the high level activity detection of the chip.
* @s Pointer to sensor data.
* @activity activity to work on
* @enable 1 to enable, 0 to disable
* @data additional data if needed, activity dependent.
*/
int (*manage_activity)(const struct motion_sensor_t *s,
enum motionsensor_activity activity, int enable,
const struct ec_motion_sense_activity *data);
/**
* List activities managed by the sensors.
* @s Pointer to sensor data.
* @enable bit mask of activities currently enabled.
* @disabled bit mask of activities currently disabled.
*/
int (*list_activities)(const struct motion_sensor_t *s,
uint32_t *enabled, uint32_t *disabled);
/**
* Get the root mean square of current noise (ug/mdps) in the sensor.
*/
int (*get_rms_noise)(const struct motion_sensor_t *s);
};
/* Index values for rgb_calibration_t.coeff array */
enum xyz_coeff_index {
TCS_CLEAR_COEFF_IDX = 0,
TCS_RED_COEFF_IDX,
TCS_GREEN_COEFF_IDX,
TCS_BLUE_COEFF_IDX,
COEFF_CHANNEL_COUNT,
};
/* Index values for rgb_scale array */
enum rgb_index {
RED_RGB_IDX = 0,
GREEN_RGB_IDX,
BLUE_RGB_IDX,
RGB_CHANNEL_COUNT
};
/* Used to save sensor information */
struct accelgyro_saved_data_t {
int odr;
uint16_t scale[3];
};
/* individual channel cover scaling and k factors */
struct als_channel_scale_t {
uint16_t k_channel_scale;
/* Cover compensation scale factor */
uint16_t cover_scale;
};
/* Calibration data */
struct als_calibration_t {
/*
* Scale, uscale, and offset are used to correct the raw 16 bit ALS
* data and then to convert it to 32 bit using the following equations:
* raw_value += offset;
* adjusted_value = raw_value * scale + raw_value * uscale / 10000;
*/
uint16_t scale;
uint16_t uscale;
int16_t offset;
struct als_channel_scale_t channel_scale;
};
/* RGB ALS Calibration Data */
struct rgb_channel_calibration_t {
/*
* Each channel has scaling factor for normalization & cover
*/
struct als_channel_scale_t scale;
/* Any offset to add to raw channel data */
int16_t offset;
/* Clear, R, G, and B coefficients for this channel */
fp_t coeff[COEFF_CHANNEL_COUNT];
};
struct rgb_calibration_t {
struct rgb_channel_calibration_t rgb_cal[RGB_CHANNEL_COUNT];
/* incandecent scaling factor */
fp_t irt;
};
/* als driver data */
struct als_drv_data_t {
int rate; /* holds current sensor rate */
int last_value; /* holds last als clear channel value */
struct als_calibration_t als_cal; /* calibration data */
};
#define SENSOR_APPLY_DIV_SCALE(_input, _scale) \
(((_input) * (uint64_t)MOTION_SENSE_DEFAULT_SCALE) / (_scale))
#define SENSOR_APPLY_SCALE(_input, _scale) \
(((_input) * (uint64_t)(_scale)) / MOTION_SENSE_DEFAULT_SCALE)
/* Individual channel scale value between 0 and 2 represented in 16 bits */
#define ALS_CHANNEL_SCALE(_x) ((_x) * MOTION_SENSE_DEFAULT_SCALE)
#ifdef __cplusplus
}
#endif
#endif /* __CROS_EC_ACCELGYRO_H */
OSZAR »